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CHARTS AND TABLES FOR ESTIMATING THE STABILITY OF THE

COMPRESSIBLE IAMINAR BOUNDARY LAYER WITH HEAT

TRANSFER AND ARBITRARY PRESSURE GRADIENT

By Neal Tetervin

SUMMARY

The minimum critical Reynolds numbers for the similar solutions of

the compressible laminar boundary layer computed by Cohen and Reshotko

and also for the Falkner and Skan solutions as recomputed by Smith have

been calculated by Lin's rapid approximate method for two-dimensional

disturbances. These results enable the stability of the compressible

laminar boundary layer with heat transfer and pressure gradient to be

easily estimated after the behavior of the boundary layer has been com-

puted by the approximate method of Cohen and Reshotko.

The previously reported unusual result (NACA Technical Note 4037)

that a highly cooled stagnation point flow is more unstable than a highly

cooled flat-plate flow is again encountered. Moreover, this result is

found to be part of the more general result that a favorable pressure

gradient is destabilizing for very cool walls when the Mach number is

less than that for complete stability. The minimum critical Reynolds

numbers for these wall temperature ratios are, however, all larger than

any value of the lamlnar-boundary-layer Reynolds number likely to be

encountered. For Mach numbers greater than those for which complete

stability occurs a favorable pressure gradient is stabilizing, even for

very cool walls.

INTRODUCTION

In reference i a useful method for calculating the compressible

laminar boundary layer with heat transfer and arbitrary pressure gradient

is presented. This method is based on the similar solutions of the lami-

narboundary-layer equations obtained in reference 2.

Because of the importance of the problem of transition frum laminar

to turbulent flow, it is often desirable to have an estimate of the sta-

bility of the laminar boundary layer. In order to obtain such an estimate
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easily, the minimumcritical Reynolds numbersfor the similar solutions
presented in references 2 and 3 have been calculated for the Mach number

range between 0 and 2.8 by the rapid approximate method of reference 4.

The results are presented in tables and charts so that, after a calcula-

tion of the laminar boundary has been made by the method of reference l,

the distribution of the minimum critical Reynolds number over the sur-

face can be easily estimated. The present investigation is limited to

two-dimensional disturbances. (See ref. 4 for a discussion of three-

dimensional disturbances. )

The distribution of the minimum critical Reynolds number and the

distribution of the boundary-layer Reynolds number enables the stability

of the laminar boundary layer with respect to the small-disturbance

Tollmien-Schlichting type of waves (ref. 4) to be estimated. The

boundary layer is stable when the boundary-layer Reynolds numbers are

less than the minimum critical Reynolds numbers and unstable when they

are greater. If the boundary layer is unst_.ble, the Tollmien-Schlichting

waves will amplify and eventually cause traiLsition somewhere downstream

of the location where the boundary layer first becomes unstable.

It is known that, even though the boundary layer is stable, transi-

tion can still occur if surface imperfections or other sources of dis-

turbances generate disturbances sufficiently large to be outside the

scope of the linear theory (ref. 4) or if the type of disturbances that
lead to transition are different from those postulated (for example,

see ref. 5). Moreover, experiments seem to indicate that extreme cooling

may cause early transition (ref. 6) although the theory based on the

Tollmlen-Schllchting type of waves predicts that the laminar boundary

layer on a very cool surface is stable; this phenomenon is not under-

stood at present.

SYMBOLS

constant

velocity of sound

wave velocity of disturbance

%

specific heat at constant pressure



3

_iIm + 1

_2

_o : _p_o

m exponent from _e : Axm (ref. 2)

local Mach number at outer edge of boundary layer,

n ---

_0

correlation number (ref. l)

RS*, c minimum critical boundary-layer Reynolds number based on dis-

placement thickness 5"

ROjc minimum critical bound_ry-layer Reynolds number based on
momentum thickness 0

enthalpy function,
hs

m

temperature

t =

te

u velocity component parallel to surface

U = m

U -

nm

ua 0
, transformed velocity component parallel to surface (ref. 2)

ge
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U
U = --

Ue

X

y=_
§

Y

transformed distance along _all (ref. 2)

distance from

transformed distance from _all (ref. 2)

2m
= m +----_'pressure gradient parameter

7 ratio of specific heats (taken equal to 1.4)

boundary-layer thickness

_* boundary-layer displacement thickne ss, 5" = f{(1

Y_ + 1 UeX-- similarity variable= _ _o'

= = I{ "-'_PU--_I" " -U_'_d_' b°undary-layer--ent"thlckneSS_e_e Ue/

- Io"-I,':)-_dYj
err: W e U

^: I{ f'(z- f')a_

viscosity

transformed momentum thickness (ref. i)

PeUe/



kinematic viscosity

density

Npr Prandtl number

B

J
stream function (ref. 2)

Subscripts:

e at outer edge of boundary layer

0 stagnation value outside boundary layer

c at critical layer inside boundary layer, where

1
= _ when fcvalue at which Re, c

value at surface

Primes denote differentiation with respect to

are dimensional and X, Y are dimensional.

w

5

_=_

_. Barred quantities

ANALYSIS

Derivation of Equations

In order to calculate the minimum critical Reynolds numbers for the

similar solutions of references 2 and 3, equations (_.4.3) and (_.4.4)

of reference 4 are used; these equations can be written as



and

25 _,k{eA

\te
J

U=C

(-_)

= o._8 (2)

c > (1- _)(see eq. (5.3.24)when Me _ l, the supplementary condition _ =

of ref. 4) must also be satisfied. It is remarked that the quantity 0.76

in the exponent 1.76 in equation (1) follows from the use of a power law

for the viscosity, with exponent equal to 0.76, in the derivation of

equation (1).

When the reference length is changed frcm 5 to e, equations (i)

and (2) can be written as

27 --_ .76

_ylwt cl lwhe
1 (,,Re, c =

04q_ _e(1- c)2 n Me> i/
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and

_u c

LI----C

= 0..58

or

_2u _u _t
t

- U=C

: o.58 (4)

In order to write equations (5) and (4) in the notation of refer-

ences 1 and 2, note that from references 1 and 2

G = F"e U__

_0

and

thus

_'e S'e Ue
%
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where

However,

(ref. 2) thus,

Therefore,

where

so that

Then

m

U=f'

= _ef'

(m)

D

U f,

ue Ue

(6)
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In order to obtain the expression for _u/_y note that

_u _u

e

I m

- f" _SY _SY _ = f"Vm 2+ 1 Uevox_SY

The definition of e in equation (7) is

(7)

or

5eUe _e

PO /0 _
Pe PO

(8)

but

gO

Oo ge

(eq. 6(b) of ref. 2) so that equation (8) becomes

(9)

=°° a° # f'(1- f')_x
Se ae Uo

but

d_ = dY m + i Ue (io)
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Then

D

Po

Pe ae

V -m+ iUe

2 _ox

/o r,(1- £')dn

When equations (9), (i0), and (11) are used, equation (7) becomes

(ll)

_=_ r'(1 r')d_
Pe #0

(12)

But

__ _e
m

_e

where

i t = + _ (1 + S) f,2

te 2 2

(which is eq. 31 of ref. 2). Then equatLon (12) becomes

_u f"
- A
t

(z3)

(i4)

where

A = f'(l - f')dB
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From equation (14) there is obtained

where

_2u

With

it follows that

_,l__)n _ _ = o__-A
_V OX_ _e

{e i

Oe _ t

Then

(15)

c)2u = __2 tf'" - t'f")

t3

where, from equation (15),

(16)

\
7 - i ,_ 7 - 1

2 _/ S' -2
f,,

By the use of equation (15) there is obtained

(17)

_t t,A---I I

_ t (18)
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When equations (6) and (14) are used, equation (3) becomes

Re 3 c =

. 1.76
25Afwt c

hen M e >= i/
(19)

where from equation (15) it follows that

and

(i+ s)
e

(20)

(21)

When equations (6), (14), (16), and (13) are used, equation (4)

becomes

t_ If (tf'" - 2t'f") I = 0.98

(22)

The expressions for t, t', tw, and tc in equations (19) and (22)

are given by equations (13), (17), (20), anl (21), respectively.

Calculation Procedure

The values of the minimum critical Reynolds number Re, c were cal-

culated by means of equations (19) and (22) for the Mach number range

between 0 and 2.8 for all the solutions witu f_ > 0 presented in

table I of reference 2 except those for Sw = -I, and for all the solu-

tions presented in table VI of reference 5. All the solutions of refer-

ence 5 are for Sw = O. The special case 3w = -i is discussed later.

The values _f Re, c were also calculated for solutions that are not
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included in table I of reference 2 but which are listed in table II of

reference 2, namely, the solutions for _ = 0 and Sw = l, 0, -0.4j

and -0.8. These solutions were obtained by using the solution for _ = 0

in reference 3 together with the Crocco relation for _ = 0, that is,

S = Sw(1 - f'). (See page 3 of ref. 2.)

The calculations were made with the aid of the IBM type 704 elec-

tronic data processing machine. Because the value of Re, c depends on

f_ raised to the fourth power (see eq. (19)) and is thus sensitive to

the value of f_ and because a high-speed computing machine was avail-

able, an iterative method was used to find f_. The method was to com-

pute _, the left-hand side of equation (22), for a range of values of

beginning with _ = O. Upon reaching a value of _ for which _ was

greater than 0.98, this value of _ and the two preceding values were

used in a second-order dlvlded-difference interpolation procedure to

find the value of _ at which _ = 0.58.

In a few cases the value 0.98 lay between _ = 0 and the first

value of _ in table I of reference 2; in these cases two values of

beyond 0.98 were used. Interpolations were made in the tables of given

data to find f, f', f", S, and S' at this value of _ (called _c ).

The value of fm was also needed (see eq. (22)); this value was obtained

by the use of equation (18a) of reference 2 which can be written as

f,,, = _,2 _ (i + S)] - ff" (e3)

The value of Rej c was then computed.

Because near Bc, the functions f, f' f" S, and S', , are

usually either monotonically increasing or decreasing whereas the func-

tion _ often has a maximum and a minimum, the accuracy of the inter-

polation was improved by using the values of fc, f_, and so forth to

calculate the value of _ for Bc; this value of _ usually differed

slightly from 0.98. A new interpolation to find Bc was then made.

In this interpolation the value of _ that differed slightly frGm 0.98

was included in the interpolation and the value of _ that differed

most from 0.98 was dropped. When the new value of Bc was found, inter-

polations were again made in the tables of given data to find f, f',

f", S, and S'. A new value of RB, c and a new value of _ were

then computed. This procedure was continued until

Re,°2Re,°lI<o 01Re,cI
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but never more than six times. Because the data in table I of reference 2

are given to four significant figures, the final results of the present

computations were rounded off to four significant figures and are so

presented in table I. In order to provide "working charts" and to show

more readily the dependence of Re, c on _, Me_, and Sw, these results

are also presented in figure 1.

The case Sw = -i is a special case because the left-hand side of

equation (22) cannot be used to compute _ numerically because the

quantity tw in the denominator is zero for Sw = -1. (See eq. (20).)

Equation (22) indicates that, in order that _ = 0.98 when tw = O, it

' = 0 or (tf'" - 2t'f")c = O. First con-is necessary that either fc

sider the condition f_ = O; the condition (tf'" - 2t'f") c = 0 is dis-

_ __l does not apply;
cussed later. 'For M e < l, the requirement f_ => I Me

thus, any value of f_ between zero and unity is allowable. If the

quantities that occur in equation (22) are expanded in powers of _ and

only the first power of _ is retained, these quantities become

L

2

2
6

f' = fw_

f"--_ + f#'n

f'" = -_(i+ s_ + _n)

(t : 1 + _ (l+ Sw+ S_r_)

t' : (i + 7 - 14 7 - ]--.2=,,2_

where the result that S_ = 0 has been used. (See eq. (18b) of ref. 2.)

When these expressions are substituted into equation (22) and powers

of _ greater than the first are neglected, the result for _, the left-

hand side of equation (22), is

_-_. ,,_(i +Sw)2 + 2_f_ 1= (i + s_)f_
(2_)
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L

2

2

6

When Sw is sufficiently near -i, the quantities S_ and fw are

! t!

both positive and the term 2S_f w is much greater than 8(i + Sw) 2.

The quantity _ therefore increases linearly with _ from zero for all

values of 8. As Sw approaches -I, the slope of the curves for

against _ approaches infinity so that the value _ = 0.58 occurs at

= O. Therefore, _c = 0 and f_ = 0 are allowable values.

The form of equation (19) that is valid when _c is near zero is

i _)°" 76 S_e )I.76
29A +7- 1 (l+Sw+

Re, c =

(1+  )f 3 c41/l-M2e(1- 2
V

(25)

If the term 8(1 + Sw) 2 is neglected with respect to 2S_f_'" in equa-

tion (24), a value of 0.58 is substituted for _ and equation (24) is

solved for _c, the result is

o.58(1 +sw)
_c = (26)

2_S_

If this value of _c

an equation for Re, c
namely,

Re, c = 40 x 104

is substituted into equation (25), the result is

that is valid for Sw near -i and M e _ i;

2 (Sw)4

(1+ ,?,w)'5"2b"(fw)3Vl_l- M_(1 - 0.0925fw --

2

(27)

If Sw is placed equal to -i in equation (27), the result is that

Re, c = _. Thus, for M e _ i and tw = 0(S w = -i), the critical

Reynolds number is infinite.
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Now consider the condition that (tf"' - 2t'f")c = 0. When M e > I,

- _ must be satisfied. Therefore, _c cannot be
the relation f_ _ 1 Me

equal to zero and is in fact far from zero for large M e . The quanti-
ties f' and t in equation (22) are then not zero. Therefore, in

order that _ = 0.58 when M e > 1 and tw = 0, it is necessary that

(tf"' - 2t'f")c = 0 (28)

The substitution of equation (15) for t and of equation (17) for t'

results in a form of equation (28) that contains M e explicitly, namely,

f tit

q
- l )2i5

i

J

Ii 7 -IM_ > -i 'I
2f" + T s' 7 M_2f'f : 0 (_ = _c ) (29)

Equation (29) can also be written as

I+7-1M_
2

(3o)

When a value of _c is chosen arbitrarily, e_uation (30) gives the

value of M e at which equations (28) and (29) are satisfied.

Calculations of M e by means of equatio_ (50) for a range of values

of _ show that equation (28) or (29) is satisfied at two values of

for each value of M e above a minimum value that depends on _. The

minimum values of Me are found to be greater than unity so that the

condition (if"' - 2t'f") c = 0 cannot be satisfied for M e < 1. At the

s_aller value of _ the relation f& _ 1 - I-- is not satisfied; at the

larger value of _ this relation is satisfied when M e is greater than
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a value of M e that depends on _ and is called Me, _. When M e is

greater than Me,_, the larger value of _ is thus _c and is the

value of _ that is associated with an allowable value of f_, a value

of f_ for which

L

2

2

6

i
' >i ---

fc= Me

First consider the case f_ > i - __i. Calculations show that for
Me

fc' > i Mel the value of Me given by equation (50) increases as f_

increases. In order to examine the behavior of Me as f' approaches i,

substitute for f"' in equation (30) its expression given by equa-

tion (23). Equation (30) then becomes

1+7__-i_
2

=$-........_(f'12_'2-(l+s)]-_'f"(ff'+4_"l].I_
[_(l+sl_f,)2 (l+s)]-f"[(J.+ s)f+2s

e

As f' approaches i, the quantities f" S, and S' all approach zero3

but the quantity f becomes large. Then, considering

f =i

f' =I- c

f" = e

S = -C

S' =¢

and keeping only the largest part of each term results in

ff' + 4f" _ff'
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+s) f)2(l+   E(f)2I s3

(I + S)f + 2S' -*f

Then for f' approaching i, equation (30) becomes

i 7 - i

2
_E(f ,)2 _ 1 - S_ - ff"

= i (32)

Thus, as f' approaches unity, the value of M e that satisfies equa-

tion (28), or its equivalents equations (29), (50), or (31), approaches

infinity.

In order to show that the requirement _ = 0.58 is satisfied when

equation (28) is satisfied and tw = O, no_e that the process used to

obtain equation (32) from equation (51) sh(,ws that the left-hand side

of equation (28) or (29) is negative for f' near unity. Then because

f', t, and f" in equation (22) are positive, the quantity _ is

positive for f' near unity. For tw / 0 the quantity _ is thus

zero at a value of f' and Me given by equation (30) and is positive

for f' near unity. At the same Me there is another smaller value

of f' at which _ is also zero but this value of f' is too small

1 (S_!_e,for example, fig. 2(b) of
to satisfy the condition f_ _ 1 - _.

ref. 7.) This smaller value of f' corre:_ponds to the smaller of the

two values of _ mentioned in the discuss_iion that follows the presenta-

tion of equation (30).

By expanding f', f" and so forth _-ound the value of _ at which

= 0 and then neglecting terms in _ - _=O of order higher than the

first, it can be shown by a procedure similar to that used to obtain

equation (24) that _ is approximately proportional to _ - _=O near

= _--0" Therefore, because tw appears in the denominator of equa-

tion (22) the slope of the curve of _ against f' becomes very large

as tw becomes very small. Consequently, the value of f' at which

= 0.58 approaches the value of f' at which equation (28) is satis-

fied. In the limit tw = O, the quantity _ is equal to 0.58 at this

value of f.
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1

Thus for f_ > 1 - _ there is a range of M e extending to infinity

for which _ = 0.58 at tw = 0. At M e = _, f_ = 1 and _c = 1.

Because A, f_, and tc are not zero in this range of M e but tw is

zero 3 equation (19) indicates that Re, c = _. Therefore for

tw = O(Sw = -1) and a range of Me that extends to infinity, the

value of Re,c is infinite.

The range of M e determined in this way has a lower limit that

, i;
occurs when fc = 1 - Mee this value of M e is Me, _. In order to find

Me,_, equation (30) for Me must be solved with the condition that

1
' = 1 - --. The results of this calculation are given in table II.fc

Note that both conditions that allow equation (22) to be satisfied when

' = 0 when M e < 1 andtw = 0 have been accounted for, namely fc =

(tf'" - 2t'f") c = 0 when M e > 1. (See also page 476 of ref. 7 for a

discussion of the case tw = 0.)

For each value of _ and Sw = -1 there is, in the range of M e

between unity and the value on the right-hand side of the last column

of table II, no allowable oscillation in the boundary layer because the

' > 1 - l__ cannot be satisfied. The usual
conditions _ = 0.98 and fc = Me

interpretation, however, is that the boundary layer is stable in this

region of M e. Therefore Re, c = _ for all values of M e for Sw = -1.

For values of Sw _ -l(tw > O) there can also be a region of M e

in which there is no allowable oscillation. This region of M e can be

found for each value of Sw and _, when there is such a region, by

noting that at the upper and lower boundary of the region the conditions

1 are both satisfied.
= 0.58 (eq. (22)) and f_ = 1 - _,

In order to calculate these boundaries the condition

1
m: 1
Me
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was rewritten as

1 - - f )2= 0 (33)

This term appears in the denominator of equation (19) and, when this

term is zero, Re, c is infinite. Actually, this condition for Re, c =

is exact and does not depend upon equation (19). (See page 87 of ref. 4

and page 469 of ref. 7. ) The calculation wa_ made by choosing a value

of Me and then finding f_ from equation (22). The left-hand side of

equation (33) was then calculated. This procedure was repeated for a

range of Me large enough to allow interpolation for the value of M e

at which equation (33) is satisfied. This value of M e is Me,_; values

of Me,_ are presented in table II and figure 2. The values of Me,_

in table II indicate that the upper branch of the curve of Me,_ against

in figure 2 is double-valued between _ = -0.3884 and 8 = -0.3657

for Sw = -i and probably also for part of _he range between _ = -0.3285

and _ = -0.}250 for Sw = -0.8. The curve of Me, _ against 8 in

figure 2 has been drawn without regard for these double-valued regions.

It is remarked that, if Me, _ were plotted against fw instead of _,

there would be no double values. (See table II of ref. 2 for values of
I!

fw') Note that both conditions that allow Re, c to be equal to infinity

(eq. 19) have been accounted for; they are _ = 0 and

1 - M2e(l - f_)2 = O. The condition f_ = 0 occurs together with tw = 0

for Me <= 1.

Figure 3 is a cross plot of figure 2 and shows the connection between
1

= ' = 1 - -- and Me for
the wail temperature ratio for Re, c _ when fc Me

a range of values of the pressure gradient p_ameter 8.

Relation Between n, Sw, and

The present results give Re, c as a lhn_ction of the pressure

gradient parameter _ and the enthalpy func_ion at the wall Sw. The

method of reference i, however, results in a distribution along the body

surface of the correlation number n which is also a pressure gradient

parameter but which is not the same as _. _[n order to find the dis-

tribution of Re,c over the surface from the calculated distribution

of n and the given distribution of Sw, it is thus necessary to be

able to fing 8 when n and Sw are known.
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In order to find the connection between _, n, and Sw note that
(from eq. (22) of ref. i)

n(l + Sw)= 8t_r _2UUI

Also note that from equation (5)

(34)

5 2_Ux

or, upon using equation (i0),

Also note that

a_iw 7 ,,o_/

-et r = _°° i_ - - _--____tdY,-, _e CW
(which is eq. (16) of ref. I) or, upon making use of equation (6),

fo=etr = f'(l - f' )dY

When equation (i0) is used, this expression for Otr becomes

_0 °°

8tr = 1 f'(1 - f')dl] : A (35)

f - t/ -m + 1 Ue m + 1 Ue
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Then, equation (54) becomes

n(l + Sw) = A2f ''' (56)
w

From equation (18a) of reference 2, it follows that

fw'"= +

Therefore, equation (36) can be written as

n = -_A 2 (37)

The relation (37) was used to calculate r for all the values of

and A given in table II of reference 2; equation (35) shows that

x°11the quantity A is the same as the quantity -_ m + 1 _e X which is

presented in table II of reference 2.

The relation between n, 9, and Sw is ;resented in table III and

figure 4.

DISCUSSION

Accuracy

The values of Re, c have been calculated by means of equations (19)

and (22) which are both approximate. Equation (19) in particular is

highly approximate and probably is a useful approximation in a range

of Me whose upper boundary is only slightly greater than unity. (See

page84 of ref. 4.) Moreover, even the more exact method of calculation

is believed to be adequate only up to a Mach number of about 2. (See

page 475 of ref. 7.) It is consequently apparent that the present cal-

culations of Re, c cannot be expected to show nore than trends with

and Sw when Me exceeds unity.

The accuracy of equation (22) and especially that of equation (19)

decreases as f_ increases. The quantity f_ increases as the ratio

of wall temperature to stagnation temperature increases (Sw increases)
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and as _ decreases, except for cold walls (Sw = -0.8). Consequently

for hot walls and small _ the present calculations of RS, c probably

can only show trends even when M e is less than unity.

In order to obtain more direct evidence concerning the accuracy of

the calculated values of Re, c, three comparisons were made. The first

is shown in figure 5 and is a comparison of the values of Re, c cal-

culated by equations (19) and (22) for the Falkner and Skan profiles

(ref. 3) with the values of Re, c calculated by Pretsch by an "exact"

method (ref. 8); the Mach number is zero and the wall is insulated

(Me = 0; Sw = 0). The accuracy of the present results is believed to

be adequate.

The second comparison is shown in figure 6 and is a comparison of

the variation of Re, c with Me for a strong favorable pressure gradient

and an insulated wall (_ = 0.6; Sw = O) calculated by Laurmann (ref. 9)

by an "exact" method with the variation calculated by equations (19)

and (22). For this case the accuracy of the present calculations seem

to be adequate up to about M e = 1.3. It is remarked that the theory

used by Laurmann has been improved by Dunn and Lin. (See ref. 7.)

The third comparison is the variation with M e of (_el_' the ratio

of wall temperature to the temperature outside the boundary layer required

1

' = 1 - _, when the pressure gradient is zerofor RS, c = _ when fc

(_ = 0). For M e up to about 2, figure 5.4 of reference 4 shows that

the variation of (_el_ with Me is insensitive to the value of the

Prandtl number and the variation of viscosity with temperature. There-

fore the accuracy of (_e) computedby equation (22) canbe tested in

this range of Me by comparing these values of <t---_elo0with more accurate

values even though the Prandtl number is different. Equation (53) is

also used in the computation of (_I but is merely a statement of the

\_,e/
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' = i - m.l Such a comparison is shown in figure 7; this
condition fc Me

/\

figure shows that for M e up to about 2.8 the variation of I_el _ cal-

culated by the use of equation (22) agrees fairly well with the varia-

tion given in reference 7.

It is noted that the indication from figure 7 is that, for values

of M e greater than about 2.0, the values of <t£_l_ are
too low. The

inference is that this result is caused by the use of a Prandtl number

of unity in the calculations of the velocity and temperature profiles

of reference 2. This comparison thus shows that formula (22) is adequate

for the calculation of (t-_e)_ and Me,_ up to at least Me = 2.
More-

over, the discussions on page 84 of reference 4 and on page 469 of ref-

erence 7 indicate that formula (22) is much more accurate for the cal-

culation of I#l and Me,_ than is formula (19) for the calculation

\T..e / oO

It is remarked that formnla (22) is approximate because theof R0, c •
!

number 0.58 is used on the right-hand side _:nstead of a function of fc

and of the velocity and temperature profiles. This function is close

to 0.58 when f$ is small. (See figs. 2(a), 2(b), and table 8 of

ref. 7. )

connection between (_I_ and M e is shown in
The approximate

figure 3 for constant values of the pressure gradient parameter 8. An

increase in 8, which means an increase in _he favorable pressure gra-

dient, causes the temperature ratio necessary for Re, c = _ to rise

and also increases the range of Me in which it is possible to make

Re, c = _. Figure 3 also indicates that an Lnsulated surface can be

completely stabilized at M e equal to abou_ 1.6 if _ = 0.4 and for

a range of M e for _ > 0.4. For values oF _ greater than 0.4, sur-

faces that are hotter than the insulated surface can also be completely

stabilized for a range of M e that is centered in the M e region between

about 1.6 and 2.0 and that decreases as the surface becomes hotter.
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Because figure 5 is a crossplot of figure 2, it is not as accurate

as figure 2. The points of intersection of the curves for _ constant

and the curves for Sw constant are accurately known but the other por-

tions of the curves for _ constant depend on the crossplot.

Anomalous Results

The calculations of Re, c resulted in two cases in which Re,c

decreased as G increased, an unexpected result. The first case is

that for Sw = 1 (fig. l(a)) when _ increased from 1.5 to 2.0, a

large increase in favorable pressure gradient.

The reason for this result seems to be that the length 8 upon

which Re, c is based is sufficiently smaller for _ = 2.0 than for

= 1.5 to cause the decrease in Re,c. Thus, from table II of refer-

-t -ence 2, the value of err m + 1 UeX

X 2 TO , the quantity to which e is pro-

portional 3 decreases from O.1115 at G = 1.5 to 0.06683 at _ = 2.0,

a decrease of 40 percent. If the reference length had been the dis-

placement thickness, the value of RS.,c at Me = 0 would be 14,460

for _ = 1.5 and would be 18,290 for _ = 2.0. The critical Reynolds

number RS*,c would thus increase with _, as expected.

The second case is that for the highly cooled wall, Sw = -0.8.

(See fig. l(d).) In this case Re, c decreases with an increase in

for all Me below Me, _. The two values of 8 that seem to be incon-

sistent are _ = -0.5285 ff" = 0.0695) and _ = -0.525 (f_ = 0.0495).i w

This decrease of Re, c with increase in _ has previously been encoun-

tered and discussed (ref. I0) in the comparison between a highly cooled

two-dlmensional stagnatlon-point flow (_ = i) and a flat-plate flow

(_ = O) with zero or small rates of mass-flow injection. Note, however,

that the smallest value of Re, c, that for _ = 2.0 and Me = O, is

2.461 × lO 6, a value that is larger than any value of Re likely to be

reached. The conclusion therefore seems to be that, for very highly

cooled walls with values of Re, c larger than any value of the boundary-

layer Reynolds number likely to be met, the effect of a favorable pres-

sure gradient is destabilizing when Me < Me,_. Calculations for values

of Me up to 8 show that, for values of Me greater than Me,_, an

increase in _ increases Re,c, the usual effect. The values of Re, c
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decrease rapidly from Re, c

Me, _. (See table I.)

= _ to Re, c < i00 for M e greater than

Because figure l(d), which is for Sw = -0.8, indicates that for

highly cooled walls at Me < Me, m the critical Reynolds number Re, c

increases as _ decreases, the question arises as to what happens as

the separation point is approached; at the separation point _ is neg-

ative and Re_ c is usually near zero. In the solutions of reference 2

for Sw = -0._, as the pressure gradient parameter _ decreases from 2.0

to its maximum negative value, -0.3285, the quantity f_ to which the

skin friction is directly proportional also decreases. A further decrease

in fw, however, is associated with an increase rather than a decrease

in _. (See table II of ref. 2.) In the region between the value of

for separation (f_ = 0), namely, -0.3088, and the value -0.3285, there

are two positive values of fw for each value of _. Because the skin

friction is directly proportional to f$, it is thus fw rather than

which must be used to measure the nearness to separation. Therefore

Re, c has been plotted against f$ in figure 8. The two values of

that previously seemed to be inconsistent with the increase in Re, c

as _ decreases, namely, _ = -0.3285 = 0.0693) and _ = -0.325

(f_ = 0.0495) are now seen to be consistent. The conclusion from this

figure is that, although Re, c increases as _ and fw decrease, a

value, of fw is eventually reached beyond which Re, c decreases rapidly

with a further decrease in fw" The behavior of Re, c for highly cooled

walls consequently agrees with the usual behavior, namely, that Re, c

approaches zero as f$ approaches zero at the separation point.

The data in table I indicate that Re, c for the case _ = -0.325,

Sw = -0.8 ('f_ = 0.0493 ) behaves in an unusual manner for M e between

about 1.0135 and 1.116. For Me between 1.C133 and 1.O16 the present

method of computation results in three value_ of Re,c at the same M e.

(See table I.) The largest values of Re, c belong to the set that

increases to infinity at M e equal to 1.016; the other two sets of

values of Re, c coalesce at a value of 1,03_ x lO at Me equal to 1.0135.

If all three values of Re, c were physically significant, instability

would occur at the lowest value of Re, c. Therefore, the physically

significant value of Re, c would reach a maximum of 1,248 x 105 at

M e = 1.0133, decrease discontinuously to 1,039 × l0 at this value of Me,

and then decrease as shown in table I. Each of the two values of Re, c

L

2

2

6



27

that appears at M e = 1.0133 belongs to a different set of values

of Re, c. One set increases with Me to infinity at M e equal to 1.116.

This variation is unlike that encountered for any other case and is prob-

ably physically unimportant because the values of Re, c in the other

set are smaller; this set decreases continuously with Me in the usual

manner and is probably the physically significant set.

CONCLUDING REMARKE

The minimum critical Reynolds numbers for the similar solutions of

the compressible laminar boundary layer computed by Cohen and Reshotko

and also for the Falkner and Skan solutions as recomputed by Smith have

been calculated by Lin's rapid approximate method for two-dlmensional

disturbances. These results enable the stability of the compressible

laminar boundary layer with heat transfer and pressure gradient to be

easily estimated after the behavior of the boundary layer has been com-

puted by the approximate method of Cohen and Reshotko.

The previously reported unusual result (NACA Technical Note 4037)

that a highly cooled stagnation point flow is more unstable than a

highly cooled flat-plate flow is again encountered. Moreover, this

result is found to be part of the more general result that a favorable

pressure gradient is destabilizing for very cool _alls when the Mach

number is less than that for complete stability. The minimum critical

Reynolds numbers for these wall temperature ratios are, however, all

larger than any value of the boundary-layer Reynolds number likely to

be encountered. For Mach numbers greater than those for which complete

stability occurs a favorable pressure gradient is stabilizing, even for

very cool walls.

Langley Research Center,

National Aeronautics and Space Administration,

Langley Field, Va., February 15, 19_9.
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T_BL_ I.- _IM_ CRITICAL P£_NOIDS _S FOR SD_ S0_UTI_rJ
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TABLE I .- MIWIM_4 CRITICAL RETMOLDS _ERS FOR SIMILAR SOLUTIONS

CY _KE IAMI_AR CO_SSIBLE BOUNDARy IAYER - Continued
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i._85
1.5_6
1.621

i._o7
1.8o0

1.897

1.99W
2.088

2.179
2._o_
s._5
2.421

i .893
1.901
1.9_6
i.967
2.0_2
2.088
2.16_
2. _v5

2. 331
e.4i7

e.98k
2.662
2.7_

2.8o9

2._8

2.4_
2.479
2.516

2.965
2.6_

_.69i
2.762
2.837

2.912
2.9_

3.058
5.L_7

3.i9_

0.4145
.4186

.4)_2

._52o

.517_

._9

.6o31

.6_7i
! .6883

•7255
.D81

.786)
•8io5
.8314

= -O.i0

0.523-I
.52_7
.5352
.5525
.5_3
.60_

.6339

.666_

.6_

.7_98

.?'A_

.78_3

.8072

.B_7)

.8_9

= -0.16

0._
._9e5
.6015
.6159
.63_
.65_

.7_I

.76_

.7852

.8069

.8_3

._M

._'_8_

= -0.19

o._D

.6698

.677_

.6_9

.709)
•72_8
.7_I

.7690

.7897

._n6

.8_W1

.8&11

•8701
.8823

I Sc

o

(b) S_ = 0 - Concluded

_I_ _,c x

i86.8 o

z&z.4 .2
166 .i ._
i_3.9 .6
118.4 .8

93.z_ I.O
71.08 1.2
53.27 1.4
39.87 1.6

)o.i7 i.8
23.28 2.0
18.37 2.2
14.83 2.4
12.21 2.6
i0.24 2.8

5_.7_ o
.5_.62 .2
91._2 .4
_6.62 .6

_0.89 .8
34.87 1.0
29.11 1,2

23.96 1.4
19.6o i.6
16.o3 1.8

15.19 2.0

lO.95 2.2
9.192 2.4
7.801 2.6

6.69W 2.8

_.78 o
21._ .2
20._ ._

18.93 .6
17.07 .8

15.09 1.0
13,o_ 1.2

_.15 1._
9,_74 1.6
8.028 1.8
6,815 2.0

%SLe 2.2
4.989 2.W
4.3i_ 2.6
3._7 2.8

6.231 0
6.ia8 .2

5.908 .4
5-5_ .6

5.083 .8
4.579 1.0
4.067 1.2

5.577 i.4
3.z_'6 i.6
2 .T25 1.8
2.376 2.0
2.o_ 2.2
1.821 2.4
i.6o_ 2.6
1.421 2.8

____L _c to'

= -0.05

i,_) o._686
1.133 .4725

i.162 ._8_3

i.209 .)O37
I. 274 .5299
i .355 .9619

1.499 .5979
1.551 .6359

1.657 .67_9
I. 763 •7093

i.869 .7_19
i .963 .77o9

.o_ .796_

; .139 .8185
; .s_7 .8376

= -0.14

i.699 o.96_
i.7o_ .9670

i.7)O .5765

i.TT2 .5919
I.829 .6123
i.899 .6)6_

:.978 ._o
; .o_ .6_

; .i53 .7z_s
: .2_,3 .7_86
: .331 .T_2
:;. 4i7 •79"P,
:. 4_ .8182

.574 .8_66

.6_6 .8_

I_= -0.18

2.186W 0.6200

_.199 .6)O8

_.z18 .6390
.257 .6523

•3o9 .6697
•372 .6903

._43 •7131
•5sO .716 7
•999 .7_2
•679 .78_8

•799 .8059
:. 839 .82_
_.9o9 .8_06
• .979 .856i
: .o_5 .8699

= -O.195

,:.699 o.71o9
;!. 706 .7132

'.TAB .7200
:!.763 .7)O7

_.809 .7_
:.86_ ,76O7

_.9_6 ,7783
:!.99_ .7963
:.061 .81_o

,.131 .8310

_.199 .8_69
_. 266 .861W

_.331 .87&5

5.393 .8863
._,,_2 .8968

0

I
[

i

J

(

(

R0_C

101.8

99.)O

9_.19
81.73
69.95

57.21
45.90

_.55

22._
18.o9
14.6_

12.o7
1o.o9
8._5

31.9_

31.39
29.81

27.45
2_.53
21.40

18._
15._8

12.98
lO.87

9.128
7.71o
6._63
5.6_6
4.881

Ll.57
LI.0_

10.33
9._08
8.39W

7.372
6._
5._23

4.o95
3.5_
3.0TO
2._81
2.]55

5-139

3 .iOO
2._9
2.81.8
2.605
2._69
2.]27
z .892
1.674
1.477

I.)O3
1.151

1.019

.8079



M

= 2.0

o o.08762 o.1122

.2 .0879_ ._6
•_ .08889 .z137

.6 .o9o_6 .u_
•8 .o9249 .1181

1.0 .09509 .12_
1.1_ .............

o o. _o45 o. L_2

• 2 .2697 .12_7

.6 .2_z .1291

.8 .28_ .13_o
z.o .2Sm_ .z_2
i.166 ............

2.922 ............
2.6 1,499 .6464

2.8 I. 637 .7093

0

.2

.4

.6

.8
i.o
1.2
1.4
1.6
1.8
2.0
2.2

2.6
2.8

1.997
1.946

i.974
2.019
2.082

2.160

2._i
2.351

2-4_7
2._
2.669

2.770
2.865

2.9"54
3. o_,9
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TABLE I.- MIRIM_4 CRITICAL RE_LD_ NUMBERS FOR SD411AR SOI/flq0NS

(Ir _ LAMINAR COMPRESSIBLE BOUNDARY IAYER - Continued

(_) ,%, =-0.4

= -0.24

0._791
•_824

-_9_

.908_

.93o6

.9981
•99o1
.6247

.66o)

.6952

.7280

.7578

.78_2

.8075

.827_

I Sc R8, c

-0.3797 4_O x i0
-.3796 _,_ x 10
-.379_ 4620 x 1o

-.3791 _916 x lO
-.3786 5598 x io

-.578o ?818 x 1o

-0.3903 1810 x l0
-.3901 1817 x 10
-._99 18_6 x i0

-._8_ 1918 x i0
-.I_ 2098 x 1o
-._7 _69o x Io

- •1415 ll0 •1

-.Ll63 _.95

-o.I_ _8.62
-.LeW 37._
-._7 _5.oa
-.12o5 39.i0

--n9 _9._3
-.lO_9 _5._,2

-.o9_9 21.37
-._996 17.61
-.o7567 1_. _i

- .066_9 11.96
- .09799 9.96_

- .O5099 7.647
-.o_23 6.323
-.o_87_ 5.29o

- .0_.19 _. _,91

,I
o

.2

.4

.6

.8
1.0
1.13_

o
.2
.4

.6

.8

1.0
1.2
i._,

1.6
1.8

2.0

2.2
2.4
2.6

2.8

0
.2
._.

.6

.8
1.0

1.2
1.4
1.6

1.8
2.0

2.2
2._.
2.6
2.8

nc fe' Sc Re,e

_=0.9

o.1421 o.io_
.14_6 ._I02

.i_0 .ILl3

.1_6_ .Lt31
•i_97 .L159
.19_8 .L_6

15 = -0.2

-o. 37o3
-.37ce
-._699
-._69_
-._687

-._678

1.2_
I._

i._
1._17
1._

2.0_
2._
2.3_
2._30

O. 3396
.3390
._92

.3662

._99
•1_221

•_627

0O99
._o08

.6119

.6596

.70_

.73_

.77o8

.7975

-0.P-139
-.?/2&
- .2081

- ._0(_

- .1910
- .1780
-.1622
- .1_6

-. I_9

-. 093_9
-. 07972

-.O5916
-.O5153

= --0.2483

2.461

2._69

2._95
2.536
2.99_,
2.66_

2.739
2.824

2.9]2

3.002
3._9
3.179

3.330
3 .I_02

0.9?76
._,8o6
._96
.6_1
.62_
.6_,69
.6724
.6996
.7270
.75_
• 7782

•8210
.8388

.89_8

-o. 0_9_i
- .o8_oo

-.08621

-. o77a2

-. 07199
-.06919
-.o5a67

-.O52_6
. .o_MS_o
- .o_g)9

-.o3_01
° .0_o

-.oese2

_8 x lO
)863x io

3981 x I0
I_246 x i0

_.892 x i0
6_9 xlO

260.2

2_6.7
211.1
181.6
Ia8._,
L_9.2

85.59
61.54
_3-67

31.37

23.09
17.6o
13.83
11.18

9.9_4
9._3
8.979

8._7
7.97_
6.?_
9.893
5. o31
4.287
3.6_,o

3.o95
2.643
2.268

1.96_

1.709
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Me

o I

.o ,

1.o I

z.o39 i

o

.2

.4 .

.6 I

3..0

1.031

.t,

.°0
1.0

o 1

.b I

.0 I

1.0 I

Z._9 I

2._1 !

2.6

I 2:8

_kBL{ I.- NIJ3e{( _ITIO/dL {g_qlOLO8 _ In0R 5]](IIAR I_{J{TI018

Of _rl LW{(I{_R C(RPR{EqSI_L{ _WX_DA{_ LWIr{_ - C_tinued

(_) %, = -o.8

.o {.. I, I,o
p= 2,0

o.o_,7o

.o_,73

.o_8_

.o_gO

.o_,518

.o}5_.2

o,O5_1

.O_27k

,0326}

.0}_77

.03}16

.0}}_8

-0.78_9

-.78_9

-.78k8

-.78&8

-.78_T

-,78_6

p =0.3

2_61 X iO_

_,_ zo_

]o86 :,, zo_

_.o}z x zc:'

I "

o.o_oi_

•o_o16

.o_o_

.oko]O

.o_oo

.o_o67

o.o_6mo

.oa6_

.o_]6

.Oe6_=}

.o_657

.-o.7_

-._

-.70_8

-.Te37

-.'TB_?

-."rB_

_ x Io_

_}x zo_

_:_Sx zc _

6o85 x

8_8 x _o_

_-_ _ _o_

p = -O. lk

0.o_8

.o48?o

.o_8"r_

• ok_81

.o_91

.ok9o1

o.ozSD

.oz8_6

• O_8TT

.o188o

.o18_

.o1888

-o.78_

- o78_5

°°7825

- .782k.

°.7824

I]35 x 10_"

_r_x _"

1_79 x 10_"

1722 x 10k

_,z8 x zo_

7319 x lo _"

o.o'r6z}

.o_z]

. o76z6

. o76z9

.oT6_,

2._.58

2 .,,5_

2.5.'.7
2. 715

o. ozo}.'_

. O.my_

.O1055

.010}5

•=O_

•0_O}7

,6_67

.6}90

.6_7f

.715Z

-0.Tf78

o.Tr_8

°.7777

-.7778

-.7778

-.7777

-.158o

-.151}
-.1_55

-,1_o5
°.1122

639} x 10_

6559 x 10_

71-19 x ]o _

5069 x 10_

=

1_=.5.8
.].1.8.1

100.8

50.76

0

.2

.6

.8

1.0

i.o}7

o

.2

._.

.6

.8

i.o

i.o_o

o

.2

.k

.6

.8

1.0

i - }'. I , I ,..
p = 1.3

J o.o'3599

.o_6Oe

.O_n

.O_26

.O_

.0_666

._

• _SN

.o_

O.O]LU l -o._

.o}n_ -.78_

.o_ -.78_

.o]z_ -.78_5

.o_z_o -.78_

.0_z69 -.78_

p-O

I 0.023.27

.O.Z.]_

.021_0

.O'aZ_

.0_}9

.0_.5

-o.Ts]O

-.78_o

-.78}0

-.78_o

-•"{8_

-.76a8

z8_Sx _.o_

29o'T x zo}

_zx m -_

_696 x m}

12.1.7 x zo_

9Z6Ox zo_

1015x i_

1ZTT x 10 _

Z_77x ZO_

P = -0.3

0.0616_

.0616_

.06ZTZ

•061_,:

•06Z8_

•06183

0.m29_

,01295

.O1_5

.03297

-0.7805

°.78O5

-.7805

- •_805

o. _005

o ,_505

}'r,,-_ x zo_

_8_zx ze

_z'_ x zo _

_888 x z_

66_8x lo _'

z,e)z x zo_

r_

r_

o
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- I, I,o
P

o 0 .o05_

._, .o0528

,6 .085_2

.8 .o_36

i .o .o69_i

1.oo9 .......

2. _5 .......

2.4 2._,50

2,6 2.757

2.8 2.907

o o._569

.2 .L_66

. _ .2%[9

.6 .2979

1.O .z_86

1.o155 ._>87

l.Oi_ .a987

1.o16 ......

1.o155 I.

i,O14 1.252

i.o16 1.251

1.018 1,265

1,02 1.27")

i.o6 1.59,

1.o% 1.459

1.1 1.472

1.15 1.553

i.2 i.6_

i.4 1.937

1.45 2.0&6

1.6 2.2_

1.8 2.531

2.0 2,772

2.2 2.970

2.6 5.2_

2.8 5.391

TABLE I.- MIRIM£_ CRITICAL _LDS _U_BmRS FO_ SIMILAR SOLUTIO_

OF T_E LAMINAR _RESS]3LE B(R/NDARy IAI'_ - Concluded

(d) Sw = -0.8 - Concluded

Se RO, ¢

- -O.5L_5 (fw"= o,]/oo)

o.oo95_9

m0_560

.oo_r)65

.00S066

.oe)572

.OO9577

.68_

.7356

-o.77'59

-.7759

-.7799

-, 77"99

-.TD9

--7799

-.1694

-.1209

-.096S9

nsi x io_

7512x Io_

8166 x 104

9981 x 104

151i × io9

6o5_ x ic>

=

36i.6

_5.29

,t

02

.4

.6

.6

1.o

1.0o9

1.99_

2.0

2.2

2.4

2.6

_.8

P= -0.5_9 (fw" = 0.OW93)

o. oi9o7 -0. TM7

,oi_o8 -,797

.oisio - .75_6

.oi5i5 -.7_9

.oi_17 -,7_4_

•O1522 -. T5_2

.01522 -. 7_/_2

• 0i522 -. 7_2

.1267 - .496i

.15_6 -._l

.1_o8 -._00

•i_28 -.4773

•i_67 -.4600

.1668 -.4_8o

• 1157 -._)8o

,iS_a - .4289

._m5 -._o95

.2218 -._899

. _OSB -. 3i91

•3_65 -.)o19

•399i -. 29i3

,_9_6 -.iS_3

,576o -.i5_7

.642_ -•_2e

•699_- -.09959

• 7574 -.o_ago

• 77i5 -.o6971

73ao x i0 _

7499 x 1o3

8io_ x ic_

9_3i x io )

_7_ x lo _

466_ x lo _

ie_ x i0 _ 1.o155

15_ x io9 1,o14

i. oi6

1059 x i0 1.018

8697 1.oe

78_. 1.o_

7_o3 1, o6

7035 i. C_

5_06 i.i0

_551 1.116

3760

5_5

2700

2221

i_6_

_0_0

_05.1

127.6

55._

51. io

20.06

i_,28

lO.83

% :=' sc %h

p= -o•528_ (q,"= o.o69_)

O. l_?O

. L_]'O

• 1270

,1271

.i_71

.L?.?2

2.429

2.728

2.932

5.o9i

3.222

0.co9550

.()C955_

,c_9_53

.oo9537

.0o9_5

.oo9_9

._m

.6096

.6750

.7225

.76_9

-o.766_

-.766_

-•766_

-:7664

-.7665

-.19_6

-. 1455

-.ii59

-.09_61

-.077LI

5"fo_ x io_

6193 x io_

726.:,x lO4

9957 * io _

_6_a x io5

7o9.6

68.06

3_.5o

22.99

16.65

i.i96

i .188

I. iSi

i.i?5

i.i9

1.1o8

i.o_

i.o_

0.L_87

.1281

.1_65

.1255

.1242

.1171

.1126

.io95

.io6_

-o.496i

- .4970

-.4991

-.50_8

-._0_5

-._191

-.5_0

-•528_

I055 x I'3

10"98 x 10

11/8 x I0

1/72 x 10

1225 x i0

1705 x i0

_6x I0

51_0 x i0

9150 x iO
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TABLE II.- VALUES OF Me,_, TRE MACH _ AT WELCH

1
_e,= =" wm_ f_=l-_-

_B Me,_

Sw = 1.0

2.0 1.727 2.o96

Sw=0 _

2.0

1.6
1.2
1.0
.8
.6

.9

.4

1.269
1.274

i.303
1.327
1.374
1.427
1.985

2.887
2.784
2.6_5
2.549
2.599
2.189
2.o37
i.697

Sw = -0.4

2.0 1.138 3.675
•9 i.134 3.389
o 1.166 2.522

Sw = -o.8

2.0

1.9
.9
0

-.14

-.529o
-.3285
- .5289

-.3290

(_'; = .139)
(f;, - .ilOO)

(z; = .o693)
(f; = .o495)

1.o39
i.o57
1.03i
1.020
1.ol8
1.012
1.009

1.009

1.009

1.oi6

6.814

6.307
5.285
4.478
4.042
5.0_
2.561

2.989

1.995

--.--.--

Sw = -i.0

2.0

.9
0

-.14

-.50

-.56o
-._84
-.5_97

i

1

1

i

i

I

i

1

10.90
6.981
9.728
5.209
4.284
5._7
2.884
2._4
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TABLE III.- RELATION BETweEN n, G, A, AND Sw

2.0

1.0

.5

.3
0

-.i0

-.1295

2.0

1.6

1.2

1.0
.8
.6

.5

.4

.5

.2

.I

.05
0

-.05
-.i0

-.14

n

Sw = 1.0

0.06683
.ii15
.1765

.274O

.5334

.4696

.5425

.5677

Sw= 0

-0.008952
-.o1898
-.o3115

-.o5754
-.03336
o
.02943
.04174

0.2508
.2904
.2761
.2925
.5118
•5359
•3903
•3667
•_57 -
.4082
•4355 -

-o.io65

-.lOO5

-.09148
-.08544

-.07778

-.06768

•06135

.05580

.o4464

.03332

.01897

2.0

.5
0
-.20
-.24
-.248.5
- .246

2.0

1.5

.5
0

-.14

-.30

-•529
-.5285

-.5285
-.325

-.3o88

0.2944
•3799
.4696

.5868

.6001
•6045

SI_ _ --o8

n

-0.1735

-.07215
0

.06148

.08265

.O8941

.08989

.4517

.4696 0

.49o5

.5150
•5386

•01020

.01205

.02652

.O4061

2.0

.5
0

o.3551
•3659
.4o91
.4696
•9057
.9821
•61o7
.6195
.6286

•6359

.6274

-0.2922

-.16

-.18

-.19

-.195
-.1988

.5522

.5677

•9769

.5814

.5854

.0_78

.o98ol

.06316

.o6991

.06815

-.14

-.30
-.56
-.5884
-.3657
-.326

Sw = -i.0

-.2008

-.o837
0

.05552

.io16

•1212
.1260
.1298

.1304

.1215

.4952

.54_

.5908

._

.@n

._

.03453

.o9o69

.1296

.1591
•1579
.1335

o._33
.4235

.4696

-0.2938
- .0897
0
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2,000'

200

RO,e

8O

60

4O

2O

I0

8

6

4

I( .4 .8 1 t.8 2.o 2 2,6 2.8

_o

(a) Enthalpy function at the wall. Sw = 1.0.

Figure 1.- Variation of boundary-layer critical Reynolds number
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Figure i.- Continued.
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Figure 6.- Variation of critical Reynolds nunber with Mach number for

pressure gradient parameter _ = 0.6 and insulated surface. Sw = O.
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